Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Biotechnol ; 17(3): e14439, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38478382

RESUMO

Global climate changes threaten food security, necessitating urgent measures to enhance agricultural productivity and expand it into areas less for agronomy. This challenge is crucial in achieving Sustainable Development Goal 2 (Zero Hunger). Plant growth-promoting microorganisms (PGPM), bacteria and fungi, emerge as a promising solution to mitigate the impact of climate extremes on agriculture. The concept of the plant holobiont, encompassing the plant host and its symbiotic microbiota, underscores the intricate relationships with a diverse microbial community. PGPM, residing in the rhizosphere, phyllosphere, and endosphere, play vital roles in nutrient solubilization, nitrogen fixation, and biocontrol of pathogens. Novel ecological functions, including epigenetic modifications and suppression of virulence genes, extend our understanding of PGPM strategies. The diverse roles of PGPM as biofertilizers, biocontrollers, biomodulators, and more contribute to sustainable agriculture and environmental resilience. Despite fungi's remarkable plant growth-promoting functions, their potential is often overshadowed compared to bacteria. Arbuscular mycorrhizal fungi (AMF) form a mutualistic symbiosis with many terrestrial plants, enhancing plant nutrition, growth, and stress resistance. Other fungi, including filamentous, yeasts, and polymorphic, from endophytic, to saprophytic, offer unique attributes such as ubiquity, morphology, and endurance in harsh environments, positioning them as exceptional plant growth-promoting fungi (PGPF). Crops frequently face abiotic stresses like salinity, drought, high UV doses and extreme temperatures. Some extremotolerant fungi, including strains from genera like Trichoderma, Penicillium, Fusarium, and others, have been studied for their beneficial interactions with plants. Presented examples of their capabilities in alleviating salinity, drought, and other stresses underscore their potential applications in agriculture. In this context, extremotolerant and extremophilic fungi populating extreme natural environments are muchless investigated. They represent both new challenges and opportunities. As the global climate evolves, understanding and harnessing the intricate mechanisms of fungal-plant interactions, especially in extreme environments, is paramount for developing effective and safe plant probiotics and using fungi as biocontrollers against phytopathogens. Thorough assessments, comprehensive methodologies, and a cautious approach are crucial for leveraging the benefits of extremophilic fungi in the changing landscape of global agriculture, ensuring food security in the face of climate challenges.


Assuntos
Extremófilos , Micorrizas , Simbiose , Fungos/genética , Agricultura/métodos , Produtos Agrícolas/microbiologia
2.
Arch Microbiol ; 206(1): 53, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180563

RESUMO

The A. sendaiensis PA2 is a polyextremophile bacterium. In this study, we analyze the A. sendaiensis PA2 genome. The genome was assembled and annotated. The A. sendaiensis PA2 genome structure consists of a 2,956,928 bp long chromosome and 62.77% of G + C content. 3056 CDSs were predicted, and 2921 genes were assigned to a putative function. The ANIm and ANIb value resulted in 97.17% and 96.65%, the DDH value was 75.5%, and the value of TETRA (Z-score) was 0.98. Comparative genomic analyses indicated that three systems are enriched in A. sendaiensis PA2. This strain has phenotypic changes in cell wall during batch culture at 65 °C, pH 5.0 and without carbon and nitrogen source. The presence of unique genes of cell wall and sporulation subsystem could be related to the adaptation of A. sendaiensis PA2 to hostile conditions.


Assuntos
Alicyclobacillus , Temperatura , Parede Celular/genética , Concentração de Íons de Hidrogênio
3.
Arch Microbiol ; 204(7): 364, 2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35661269

RESUMO

The effect that the fructans of Cichorium intybus and Agave salmiana have on health, as well as on the growth of some Lactobacillus species, has been demonstrated. The aim of this work was to evaluate the effect of linear and branched fructans on the growth of seven strains and some probiotic characteristics. The molecular identification of seven strains was performed. Moreover, the growth, resistance to antibiotics and simulated gastrointestinal conditions were also evaluated when these microorganisms were grown in a culture medium containing agave and chicory fructans. The strains were identified as Lactiplantibacillus plantarum, Lactiplantibacillus pentosus, Lactiplantibacillus fabifermentans and Lactiplantibacillus paraplantarum. The results suggest that the seven Lactobacillus strains were able to grow using agave (branched) and chicory (linear) fructans. The linear and branched fructans statistically influenced the kinetic parameters. The specific growth rate varied between 0.270 and 0.573 h-1 and the generation time between 1.21 and 2.45 h for all strains and culture media. All strains showed a growth of 9 Log CFU/mL in all the culture media. Production of lactic, acetic, propionic, butyric, formic and succinic acid was influenced by linear and branched fructans (p < 0.05). All the strains survived simulated gastrointestinal conditions greater than 83%. The resistance of Lactobacillus against ciprofloxacin and rifaximin was significantly affected by linear and branched fructans, but survival to gastrointestinal conditions was not affected by the type of substrate. These results highlight the use of the seven strains, which have probiotic potential; therefore, these could be applied in several biotechnological products.


Assuntos
Agave , Probióticos , Agave/química , Bebidas , Meios de Cultura , Frutanos/química , Lactobacillus , México
4.
J Fungi (Basel) ; 7(6)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198931

RESUMO

Wood-decay fungi are characterized by ligninolytic and hydrolytic enzymes that act through non-specific oxidation and hydrolytic reactions. The objective of this work was to evaluate the production of lignocellulolytic enzymes from collected fungi and to analyze their growth on lignocellulosic material. The study considered 18 species isolated from collections made in the state of Chiapas, Mexico, identified by taxonomic and molecular techniques, finding 11 different families. The growth rates of each isolate were obtained in culture media with African palm husk (PH), coffee husk (CH), pine sawdust (PS), and glucose as control, measuring daily growth with images analyzed in ImageJ software, finding the highest growth rate in the CH medium. The potency index (PI) of cellulase, xylanase, and manganese peroxidase (MnP) activities was determined, as well as the quantification of lignin peroxidase (LiP), with the strains Phlebiopsis flavidoalba TecNM-ITTG L20-19 and Phanerochaete sordida TecNM-ITTG L32-1-19 being the ones with the highest PI of hydrolase activities with 2.01 and 1.83 cellulase PI and 1.95 and 2.24 xylanase PI, respectively, while Phlebiopsis flavidoalba TecNM-ITTG L20-19 and Trametes sanguinea TecNM-ITTG L14-19 with 7115 U/L LiP activity had the highest oxidase activities, indicating their ability to oxidize complex molecules such as lignin.

5.
Arch Microbiol ; 203(7): 4557-4570, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34159433

RESUMO

Extremophile bacteria have developed the metabolic machinery for living in extreme temperatures, pH, and high-salt content. Two novel bacterium strains Alicyclobacillus sp. PA1 and Alicyclobacillus sp. PA2, were isolated from crater lake El Chichon in Chiapas, Mexico. Phylogenetic tree analysis based on the 16SrRNA gene sequence revealed that the strain Alicyclobacillus sp. PA1 and Alicyclobacillus sp. PA2 were closely related to Alicyclobacillus species (98% identity and 94.73% identity, respectively). Both strains were Gram variable, and colonies were circular, smooth and creamy. Electron microscopy showed than Alicyclobacillus sp. PA1 has a daisy-like form and Alicyclobacillus sp. PA2 is a regular rod. Both strains can use diverse carbohydrates and triglycerides as carbon source and they also can use organic and inorganic nitrogen source. But, the two strains can grow without any carbon or nitrogen sources in the culture medium. Temperature, pH and nutrition condition affect bacterial growth. Maximum growth was produced at 65 °C for Alicyclobacillus sp. PA1 (0.732 DO600) at pH 3 and Alicyclobacillus sp. PA2 (0.725 DO600) at pH 5. Inducible extracellular extremozyme activities were determined for ß-galactosidase (Alicyclobacillus sp. PA1: 88.07 ± 0.252 U/mg, Alicyclobacillus sp. PA2: 51.57 ± 0.308 U/mg), cellulose (Alicyclobacillus sp. PA1: 141.20 ± 0.585 U/mg, Alicyclobacillus sp. PA2: 51.57 ± 0.308 U/mg), lipase (Alicyclobacillus sp. PA1: 138.25 ± 0.600 U/mg, Alicyclobacillus sp. PA2: 175.75 ± 1.387 U/mg), xylanase (Alicyclobacillus sp. PA1: 174.72 ± 1.746 U/mg, Alicyclobacillus sp. PA2: 172.69 ± 0.855U/mg), and protease (Alicyclobacillus sp. PA1: 15.12 ± 0.121 U/mg, Alicyclobacillus sp. PA2: 15.33 ± 0.284 U/mg). These results provide new insights on extreme enzymatic production on Alicyclobacillus species.


Assuntos
Alicyclobacillus , Concentração de Íons de Hidrogênio , Nutrientes , Temperatura , Alicyclobacillus/efeitos dos fármacos , Alicyclobacillus/enzimologia , Alicyclobacillus/genética , Nutrientes/farmacologia , Filogenia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...